Tescan EBL/SEM
Standard Operating Procedure
AggieFab
Texas A&M University
Update: 8/12/2025

Contents

- 1. Login
- 2. E-beam alignment
- 3. UV coordinate system
- 4. Exposure
- 5. Shutdown
- 6. Appendix
 - 1. Sample stage handling
 - 2. SEM screen explanation
 - 3. DrawBeam explanation

USCOPE

 The purpose of this document is to describe requirements and basic operating instructions for the Tescan SEM/EBL System. The use of this tool is limited to approved processes only.

SAFETY

- Be sure that you are trained and signed off to use this equipment.
- Use care when operating around high voltage or high current.
- If you are unsure about any procedure or indication while operating this equipment be sure to contact a staff member or trainer for assistance.
 - Primary contact: Sung Oh Woo, sung.woo@tamu.edu

Start

- Login with your account
- > The MIRA3 control software always appears. Otherwise, click the MiraTC icon.
- > Self test will be performed upon login

Department of Electrical & Computer Engineering

Beam alignment (1/4)

- 1. Click '1' on the SEM control to avoid exposure at the center of sample
- 2. Start e-beam: 'Beam On' button
 - The screen shows similar image with the following SEM picture
 - Set magnification low, < 100X
- 3. Select proper BI (BI=10 for smallest beam spot size)

Beam alignment: (2/4)

- 1. Locate the gold standard (direction can be found from previous slide)
- 2. Focus the surface at the magnification of 1000X or higher
 - At this moment, Z&WD (working distance) > 30 mm
 - Focus on the gold standard, like right image
 - No fine focus is needed at this moment

Beam alignment (3/4): bring WD to 6 mm

Three steps

- WD 15 mm & focus
- 10 mm & focus
- 6 mm & focus & stigma

Beam alignment: 4/4

- Do focus & stigma
- Do wobbling correction at magnification of 100,000 X or higher

- Click Next
- Do the wobbling
 If the images are shaking laterally while WOB activated, correct it until any particles shows only focus-defocus mode.
- Click finish

Sample alignment

- 1. Come back to '1' position
- 2. Sample alignment: click 'Define UV'

Electron beam current measurement

- 1. Move to Faraday cup & Zoom in completely
- 2. Select proper BI (beam intensity)
 - For multiple Bls, measure all the currents corresponding to Bis
 - Beam alignment should be done with the BI corresponding to smallest beam current
- 3. Open the DrawBeam Process
- 4. Measure the beam current → update the 'Beam current' value

Exposure on the substrate (1/4)

- 1. Locate at the sample area
 - 1. Find a location where focus can be made
 - 2. Or, a scratch has been made, locate the end of the scratch
- 2. Focus & stigma at high magnification (e.g. 100,000X) during focusing, PMMA will be damaged
- 3. Move to unexposed location
 - 1. Turn off the beam click 'Continual'

Exposure on the substrate (2/4)

- 1. Move 100 ~ 200 μm away (downward) to avoid e-beam exposed area
 - E.g., "++0.2" → send the stage 200 µm along positive direction
- 2. Start exposure

Exposure on the substrate (3/4)

- Making a beam spot: checking the beam shape (stigma) & focus
 - Max magnification → Analysis & Measurement → click at the center of SEM window → yellow cross
 - Click 'Start button'
 - This takes 30 60s depending on current stigma & focus
- 2. Beam shape
 - Perfect circular shape (right image): move forward for exposure
 - Not clear oval or linear shapes: adjust stigma & focus
 - Nothing appeared: go back to previous location and do focus and stigma, then repeat making beam spot

Exposure (4/4) – set the exposure parameters

Department of Electrical

& Computer Engineering

Shutdown

- 1. Shut off Beam
- 2. Home stage
- 3. Vent
- 4. Unload sample
- 5. Pump wait until the pressures turn to green
- 6. File log off
- 7. No for Standby mode

Appendix

Sample stage

> If another stage needs for the operation, switch one to the other

EBL stage

SEM stage

Login screens: two screens

SEM

Lithography (DrawBeam)

Department of Electrical

& Computer Engineering

SEM functions

EBL: DrawBeam

Revision history

SIGNATURES AND REVISION HISTORY

1. Original author of this document: Mitchell Roselius

Original author Title or Role: Student worker

• Date of original: 2/25/2021

2. Revision B notes: Update of the graphical procedures.

3. Revision C notes: Photos and description added

Approvals:

Technical Manager Signature: Sandra G Malhotra

Date: 7/11/2025

Revision	Author	Date
Original Issue	Manouchehr Teimouri	3/5/2018
Rev A	Mitchell Roselius	2/25/2021
Rev B	Sung Oh Woo	7/1/2025
Rev C	Sung Oh Woo	8/12/2025