

UpNano Nano One 2PP 3D printer Standard Operational procedure AggieFab Texas A&M University



ĀМ



- SCOPE
  - The purpose of this document is to describe requirements and basic operating instructions for the UpNano NanoOne 3D printing System. The use of this tool is limited to approved processes only.
- SAFETY
  - Be sure that you are trained and signed off to use this equipment.
  - Be sure to keep all doors and protective shields in place before operating this equipment.

Texas A&M Engineering Experiment Station

 $\operatorname{TEXAS}_{U \text{ N I V E R S I T Y}} A M$ 

- Refer the materials datasheets for the printing materials.
- If you are unsure about any procedure or indication while operating this equipment be sure to contact a staff member or trainer for assistance.

## Contents

- 1. Scope and Safety
- 2. General work flow
- 3. Overview: resins, characteristics, and post process

Texas A&M Engineering Experiment Station

Department of Electrica

 $\begin{array}{c} TEXAS A \& M \\ U & V & F & S & I & T \\ \end{array}$ 

- 4. Checking/Adjusting Tilt Correction Stage
- 5. Think3D
- 6. Printing with fluorescent resins
- 7. Printing with NON-fluorescent resins
- 8. Appendix
  - Objectives, vats, printing mode
  - Substrates & wafer holders
  - Glass substrates and their holders

|                                        | Resins   |                                                               | Obje                                                                                              | ctive       | <b>.</b>    |                        |                                                                                                                                                                                           |           |
|----------------------------------------|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------|-------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                        | Oils     |                                                               | Feature                                                                                           | Fine        | Coarse      | Development            | Post process                                                                                                                                                                              | Autofocus |
| Glass fabrication                      | UpQuartz | Fused silica<br>(SiO2)                                        |                                                                                                   | -           | 5X, 10X     | PGMEA<br>(mag stirrer) | <ol> <li>Debinding: ashing oven (air)</li> <li>Sintering : vacuum tube<br/>furnace (10^2 mbar)</li> <li>*Al-Oxide plates recommended</li> <li>** temperature profiles avaiable</li> </ol> | ο         |
| High resolution                        | Upbrix   | Ultrahigh-<br>resolution<br>2.5D material                     |                                                                                                   | 40X         | 40X         | PGMEA, IPA             | -                                                                                                                                                                                         | Ο         |
|                                        | Updraft  | Fas                                                           | st prototype                                                                                      | All         | All         | IPA                    | -                                                                                                                                                                                         | 0         |
| Transparent<br>Fast prototype          | UpPhoto  | High-performance                                              | 1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0<br>400 600 800 1000 1200 1400 1600 180C<br>Wavelength (nm) | All         | All         | IPA                    | -                                                                                                                                                                                         | 0         |
|                                        | Upflow   | Low-au<br>Lo                                                  | tofluorescence<br>w-viscosity                                                                     | 10, 20, 40X | 10, 20, 40X | PGMEA, IPA             | UV (365 - 405 nm)<br>~ 30 min                                                                                                                                                             | х         |
| Low auto-fluorescent<br>Bio compatible | Upopto   | High optical<br>transparency<br>Ultralow-<br>autofluorescence |                                                                                                   | 10, 20, 40X | 10, 20, 40X | PGMEA, IPA             | UV (365 - 405 nm)<br>30 - 60 min                                                                                                                                                          | Х         |
|                                        | Upsol    | spining                                                       | g on substrate<br>2.5D, 3D                                                                        | 10, 40X     | 10, 40X     | 1-propanol             | Tesas A SV Roch en for a la composición de la composición de la composición de la composición de la composición                                                                           | Ο         |

## **Checking tilt correction stage**



## Checking gap

- try to insert the substrate hold into the top and bottom pieces: X, Y, Z motors
- □ Should be inserted while not too much gap





Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

TEXAS A&M

ĀМ

## Open 'tilt' tap Click the 'setting' icon

|                                                           |     |              | Clear 2- |
|-----------------------------------------------------------|-----|--------------|----------|
| ancei                                                     |     |              | Clear Jo |
| <b>3</b> *                                                |     |              |          |
| Connect to the tilt insert. Disabled if already connected |     |              |          |
| ıbstrate: Glass Slide (0.17mm)                            |     |              | $\sim$   |
| 🗙 Center Top                                              | Pos | sition       |          |
| Left Bottom                                               | X:  | 0.00 µm      | ***      |
|                                                           | Y:  | 0.00 µm      |          |
| K Right Bottom                                            | Z:  | 0.00 µm      |          |
|                                                           |     | Set Z to cur | rrent    |
|                                                           |     | Goto XY Pos  | sition   |
|                                                           |     |              |          |
|                                                           |     |              |          |
|                                                           |     |              |          |
|                                                           |     |              |          |
|                                                           |     |              |          |
|                                                           |     |              |          |
|                                                           |     |              |          |

## Adjust the gap using ONLY arrows NEVER click 'Set Zero' or 'Goto Zero'

| Move Motors       |                   | ? ×               |
|-------------------|-------------------|-------------------|
| Motor X           | Motor Y           | Motor Z           |
| <b>†</b>          | <b>†</b>          | <b>†</b>          |
| •                 | +                 | <b>•</b>          |
| Position: -62.2µm | Position: 155.6µm | Position: 164.8µm |
| Set Zero Goto     | Zero              |                   |

TEXAS A&M

ĀМ

Texas A&M Engineering

Experiment Station

## Think 3D – set up parameters



## **Objectives**



- ➤ 5 objectives available
- > Consider resolution, size, and parameters

Texas A&M Engineering Experiment Station

A M

Department of Electrical & Computer Engineering

| Objective | ID          | Media    | NA   | WD<br>(mm) | FOV<br>(mm) | BH<br>(mm) | Max Bottom Up<br>Height (mm) | XY<br>speed<br>(mm/s) | Volume<br>speed<br>(mm^3/s) |
|-----------|-------------|----------|------|------------|-------------|------------|------------------------------|-----------------------|-----------------------------|
| 5X        | Fluar       | air      | 0.25 | 12.5       | 2.8         | 80         | 3                            | 1200                  | 300                         |
| 10X       | UPLFLN      | air      | 0.3  | 10         | 1.4         | 60         | 2                            | 600                   | 60                          |
| 10X       | UPLXAPO     | air      | 0.4  | 3.1        | 1.4         | 60         | 0.7                          | 600                   | 40                          |
| 20X       | UPLSAPO     | DH2O     | 0.7  | 0.35       | 0.7         | 30         | 0.25                         | 300                   | 2.25                        |
| 40X       | UPLSAPO40XO | Immersol | 1.4  | 0.13       | 0.35        | 10         | 0.15                         | 150                   | 0.25                        |

### Vat (XXL) - air







Texas A&M Engineering

Experiment Station

AM | TEXAS A&M.

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

A M

## **Printing with fluorescent resins**

1. Open the build room

### Printer: build room opened



## Build room



TEXAS A&M

ĀМ

Texas A&M Engineering Experiment Station

Department of Electrical & Computer Engineering

2. Screw in an objective



## 3. Select a vat & put resin



## 4. Place the vat



Texas A&M Engineering Experiment Station

Department of Electrical & Computer Engineering

### 5. Place a stage on the frame



## 6. Place and secure substrate holder



TEXAS A&M

ĀМ



ĂМ

TEXAS A&M

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

A M

Texas A&M Engineering

Experiment Station

|       |            | NanoOne 1000<br>Objective: UPLXAPO10X<br>Description:<br>Elapsed Time: -<br>Steps: 0/0<br>Cancel<br>Pending Jobs<br>Start Oneck<br>1. UPLXAPO10X Tue Nov 12 15:58:54 2024.thinkage<br>UPLXAPO10X/UpPhoto Tomm Standard Plate/Vat<br>Click 'Send to printer'<br>Job file appears | 0%<br>Clear Job<br>Delete<br>2024-11-12 15:59 |
|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Stage | Laser spot | <ol> <li>Click 'on'</li> <li>Set power 0.5 mW or lo</li> <li>Click 'set'</li> <li>Laser spot at the cente</li> </ol>                                                                                                                                                            | wer<br>r appears                              |

Texas A&M Engineering

TM | TEXAS A&M

TEXAS A&M UNIVERSI

Department of Electrical & Computer Engineering



Department of Electrical

& Computer Engineering

Experiment Station

| New File - 31 Station<br>Line Joint Theory Help<br>Design<br>region<br>region<br>region                                 | Menu deals with the Printer                                                                             | job file, not stl file                                                                                                                                                                                                     | NanoOne 1000 Objective: UPLXAPO10X Description: Focusing Elapsed Time: - Remaining Time: - Steps: 0/0 Cancel | - O ×<br>Send to printer  V  O% Clear Job                                                        |                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                         |                                                                                                         | <ul> <li>Autofocus setting popup</li> <li>Check parameters and click 'Sta</li> <li>Advanced</li> <li>Advanced</li> <li>Obsons</li> <li>UpPhote</li> <li>UpPhote</li> <li>UpPhote</li> <li>Start</li> <li>Cancel</li> </ul> | Substrate: Glass Slide (0. 17mm)  Center Top  Left Bottom  Right Bottom  Correct Tit Goto Zero               | Position<br>X: 0.00 µm<br>Y: 4285.28 µm<br>Z: 4000.00 µm<br>Set Z to current<br>Goto XY Position | Filt correction<br>Set substrate<br>Double 'Center Top'<br>Click 'Autofocus'<br>Click 'Set Z to current'<br>Repeat for the other<br>points.<br>Repeat the other two |
| Stage<br>Zero: Center<br>X: -792.543 µm -0.0<br>Y: -98.84 µm -8,285.<br>Z: 107.241 µm -17,489.<br>Axes: XYZ ✓ Set Point | Velocity<br>Slow<br>Slow<br>Modera te<br>f fast<br>Power: 0.50mW (2) Set<br>Autofocus<br>200 µm<br>Stop | <ul> <li>9. Increase Z with the slow r</li> <li>10. Click Autofocus, set para</li> <li>11. Perform tilt correction</li> <li>12. Move to center</li> <li>13. Perform final autofocus</li> <li>14. Start printing</li> </ul> | node until the laser sp<br>ameters, and click sta                                                            | oot become sm<br>rt                                                                              | naller                                                                                                                                                              |

Texas A&M Engineering

Department of Electrical & Computer Engineering

TM | TEXAS A&M

## **Printing with NON-fluorescent resins**

AggieFab Nanofabrication Facility





Department of Electrical & Computer Engineering

### Start with pre-patterned substrate Ex) 1" X 1" glass (500 µm thick)



Mounting substrate on vacuum holder Turn on vacuum pump & Place the substrate



TEXAS A&M

ĀМ

Texas A&M Engineering Experiment Station

Department of Electrical & Computer Engineering

## **Printing with NON-fluorescent resins**

### Focus at the 1<sup>st</sup> point

C:/Users/AggieFab/Desktop/Users/Sung Oh Woo/LevelingPyramid\_upOPTO\_40x.thinkage - Think3D

# Click 'Tilt tap' and select the 1<sup>st</sup> point **!!!** NO double click



## Appendix

AggieFab Nanofabrication Facility





TEXAS A&M UNIVERSITY Department of Electrical & Computer Engineering

## Vat mode

- > Combination of various vats and substrates: objective media (oil, air, water) | substrate size
- Printing part height up to 42 mm





TEXAS A&M

ĀМ

Texas A&M Engineering

Experiment Station

**Department of Electrical** 

& Computer Engineering

## Bottom up mode

- > Printing into sterile vessels, petri dishes, or any transparent substrates
- Printing from the bottom of the vessel upwards
  - Printed structure height limit because of the scattering of laser through the polymerized resin.



Texas A&M Engineering Experiment Station

Department of Electrica & Computer Engineering

 $\begin{array}{c} \text{TEXAS A&M} \\ \text{UNIVERSITY} \end{array}$ 

Ă M

## **Printing materials selection guide**

# **Printing resins**

for any application

| for any | apprication                 | Updraft | Up <mark>brix</mark> | UPsol   | Up <b>thermo</b><br>Powered by cubicure | Upphoto    | UP <b>opto</b> | Upblack | Upflow      |
|---------|-----------------------------|---------|----------------------|---------|-----------------------------------------|------------|----------------|---------|-------------|
|         | Common Objective            | 20x,10x | 40x                  | 40x,20x | 10x,5x                                  | 20x,10x,5x | 40x,20x,10x    | 10x     | 40x,20x,10x |
|         | Fabrication Speed           | +++     | ++                   | ++      | ++                                      | ++         | +              | ++      | ++          |
|         | Highly Transparent          |         |                      |         |                                         |            | ++             |         | +           |
|         | Vat Mode                    | ~       | ~                    |         | ~                                       | ~          | ~              | ~       | ~           |
|         | High Aspect Ratio           | ~       | ~                    |         | ~                                       | ~          | ~              | ~       | ~           |
|         | Low Viscosity               |         | ~                    |         |                                         | ~          |                |         | ~           |
|         | Low Fluorescence            |         |                      |         |                                         |            | ~              | ~       | ~           |
|         | Low Transmissive            |         |                      |         |                                         |            |                | ~       |             |
|         | Refractive Index Matched    |         | ~                    |         |                                         |            |                |         |             |
|         | 2.5D Structures             |         | ~                    | ~       |                                         |            |                |         |             |
|         | Sub-µm Printing             |         | ~                    | ~       |                                         |            |                |         |             |
|         | Overhangs Smaller 90°       |         |                      | ~       |                                         |            |                |         |             |
|         | Bio Compatible*             |         |                      |         | ~                                       | ~          | ~              | ~       | ~           |
|         | High Temperature Stability* | *       |                      |         | ~                                       |            |                |         |             |
|         |                             |         |                      |         |                                         |            |                |         | 23          |

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

- ➤ 5 objectives available
- Select one of them based on the resolution and total size of the printing structure
- Estimation of printing time is available in the 'Think 3D'
  - Refer the excel file on the desktop, 'Print time estimation.xlsx'



| Objective | ID          | Media    | NA   | WD<br>(mm) | FOV<br>(mm) | BH<br>(mm) | Max Bottom Up<br>Height (mm) | XY speed<br>(mm/s) | Volume<br>speed (mm^3/s) |
|-----------|-------------|----------|------|------------|-------------|------------|------------------------------|--------------------|--------------------------|
| 5X        | Fluar       | air      | 0.25 | 12.5       | 2.8         | 80         | 3                            | 1200               | 300                      |
| 10X       | UPLFLN      | air      | 0.3  | 10         | 1.4         | 60         | 2                            | 600                | 60                       |
| 10X       | UPLXAPO     | air      | 0.4  | 3.1        | 1.4         | 60         | 0.7                          | 600                | 40                       |
| 20X       | UPLSAPO     | DH2O     | 0.7  | 0.35       | 0.7         | 30         | 0.25                         | 300                | 2.25                     |
| 40X       | UPLSAPO40XO | Immersol | 1.4  | 0.13       | 0.35        | 10         | 0.15                         | 150                | 0.25                     |

## **Objectives (2/3)**

|          |              | BOTTOM UP       | VAT             | VERTICAL         | HORIZONTAL      |                   |                   |
|----------|--------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|
|          | 40x          | ≤ <b>150</b> µm |                 | > <b>0.8</b> µm  | > <b>1.8</b> µm | <b>150</b> mm/s   | <b>0.25</b> mm³/h |
| CTIVES   | 20x          | <b>≤ 250</b> µm | DADT            | > <b>2.5</b> µm  | > <b>5</b> µm   | <b>300</b> mm/s   | <b>2.25</b> mm³/h |
| ard obje | 10x<br>NA0.4 | ≤ <b>700</b> μm | HEIGHT<br>UP TO | > <b>5</b> µm    | > <b>20</b> µm  | <b>600</b> mm/s   | <b>40</b> mm³/h   |
| STAND/   | 10x<br>NA0.3 | ≤ <b>2</b> mm   |                 | > <b>7</b> µm    | > <b>50</b> µm  | <b>600</b> mm/s   | <b>60</b> mm³/h   |
|          | 5x           | ≤ <b>3</b> mm   |                 | > <b>12.5</b> µm | > <b>200</b> µm | <b>1,200</b> mm/s | <b>300</b> mm³/h  |

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering

## **Objectives (3/3)**

|          |              | NA NA | WD   | FOV  | BH | IM    | FS              | FS               |
|----------|--------------|-------|------|------|----|-------|-----------------|------------------|
|          | 40x          | 1.4   | 0.13 | 0.35 | 10 | oil   | ≤ <b>220</b> nm | ≤ <b>550</b> nm  |
| CTIVES   | 20x          | 0.7   | 0.35 | 0.7  | 30 | water | ≤ <b>420</b> nm | ≤ <b>2.9</b> μm  |
| ard obje | 10x<br>NA0.4 | 0.4   | 3.1  | 1.4  | 60 | air   | ≤ <b>730</b> nm | ≤ <b>9.2</b> µm  |
| STAND    | 10x<br>NA0.3 | 0.3   | 10   | 1.4  | 60 | air   | <b>≤ 980</b> nm | ≤ <b>16.4</b> µm |
|          | 5x           | 0.25  | 12.5 | 2.8  | 80 | air   | ≤ <b>1.2</b> µm | ≤ <b>23</b> µm   |

TEXAS A&M UNIVERSIT

Department of Electrical & Computer Engineering

Texas A&M Engineering **Texas** Experiment Station

TM | TEXAS A&M

- Numerical Aperture | WD – Working Distance [mm] | FOV – Field of View [mm] | BH – Block Height [µm] | IM – Immersion Media | FS – min. Feature Size

#### Vat (XXL) - air







Texas A&M Engineering

Experiment Station

AM | TEXAS A&M.

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

A M



TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

TEXAS A&M. TEE

## **Stages and wafer holders:**

### Tilt correction stage

– various sample substrate holders



### Tilt correction 4"stage



### Various sample substrate holders



TEXAS A&M

ĀМ

Texas A&M Engineering Experiment Station

Ā M

Department of Electrical & Computer Engineering

## **Glass substrate & holders**

### Glass substrates

- Square: 10, 20, 40 mm<sup>2</sup>
- Round: 1 inch in diameter



### Glass substrate holder





Ā M

TEXAS A&M UNIVERSI

Department of Electrical & Computer Engineering

ĀМ

## Substrate holder manipulation

### Holding sample

- Place the substrate holder
- Rotate the knob clockwise
- Sample holding square wider
- Place a glass substrate
- Bring back the holder using knob



### **Knob operation**

ĀМ

TEXAS A&M

- Move the stage holder along +X
- Lift up the metal pieces, popping up the glass substrate



TÍ∓7

Texas A&M Engineering

**Experiment Station** 

Department of Electrica

& Computer En

#### SIGNATURES AND REVISION HISTORY

- 1. Original author of this document: Dr. Sung Oh Woo
- 2. Original author Title or Role: Research Engineer
- 3. Date of original: 11/12/2024

#### **Approvals:**

Technical Manager Signature:

Gandra G Malhotra

Date: 3/7/25

| Revision                                                | Author          | Date       |
|---------------------------------------------------------|-----------------|------------|
| Original Issue                                          | Dr. Sung Oh Woo | 11/12/2024 |
| Printing technique with the Non-fluorescent resin added | Dr. Sung Oh Woo | 03/05/2025 |
|                                                         |                 |            |
|                                                         |                 |            |
|                                                         |                 |            |
|                                                         |                 |            |
|                                                         |                 |            |
|                                                         |                 |            |





Ам