UpNano Nano One 2PP 3D printer Operational procedure AggieFab Texas A&M University

AggieFab Nanofabrication Facility

Department of Electrica

Contents

- 1. Scope and Safety
- 2. General work flow
- 3. Think 3D set up printing parameters
- 4. Set up printer
 - Set up objective, vat, stage
- 5. Think 3D set up printer
- 6. Post printing process
- 7. Appendix
 - 1-Photon vs 2-Photon process
 - Vat printing mode
 - Bottom up printing mode
 - Objectives
 - Vats
 - Substrates & wafer holders
 - Glass substrates and their holders

Texas A&M Engineering Experiment Station

Department of Electrica & Computer Engineerin

TEXAS A&M

ĀМ

• Substrate manipulation

- SCOPE
 - The purpose of this document is to describe requirements and basic operating instructions for the UpNano Nano One 3D printing System. The use of this tool is limited to approved processes only.
- SAFETY
 - Be sure that you are trained and signed off to use this equipment.
 - Be sure to keep all doors and protective shields in place before operating this equipment.

Texas A&M Engineering Experiment Station

TEXAS A&M

- Refer the materials datasheets for the printing materials.
- If you are unsure about any procedure or indication while operating this equipment be sure to contact a staff member or trainer for assistance.

- 1. Design & Printing
 - 'Think 3D': a software for parameters setting and printing
- 2. Adhesion promotion (optional)
- 3. Selecting parts and materials
 - Resin: refer to the material brochure
 - Objective & Stage: resolution and printing volume
 - Vat: Objective type (air or oil) & printing volume
 - Stage inset & substrate holder: substrate type and size

Texas A&M Engineering Experiment Station

Department of Electrica

TEXAS A&M

- 4. Screw in the objective (build room)
- 5. Insert Vat and stage
- 6. Insert substrate
- 7. Print
- 8. Post process

Think 3D – set up parameters

Set up printer

1. Open the build room

Printer: build room opened

Build room

 $\operatorname{TEXAS}_{U N I V E R S I T Y}_{U N I V E R S I T Y}$

A M

Texas A&M Engineering Experiment Station

TEXAS A&M UNIVERSI

Department of Electrical & Computer Engineering

Set up printer

2. Screw in an objective

3. Select a vat & put resin

4. Place the vat

Texas A&M Engineering Experiment Station

TEXAS A&M UNIVERSI

Department of Electrical & Computer Engineering

5. Place a stage on the frame

6. Place and secure substrate holder

TEXAS A&M

Ā M

Think 3D – set up printer

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

A M

Texas A&M Engineering

Experiment Station

AM | TEXAS A&M

Think 3D – set up printer: focusing on the substrate

-	NanoOne 1000 *
 Laser spot 	Objective: UPLXAPD10X Description: Elapeed Time: - Steps: 0/0 Cancel 0% Start: Oneck Cerrol Delete 0% Cercel 2004-111-12 15:09 Delete 2004-111-12 15:09 UPLXAPD10X Ture Nov 12 15:59:54 2024.thinkage 2004-111-12 15:09
Stage Image: Center Image: Step: 0.01 µm Image: Step: Image: St	Set Click 'on' Set power 0.5 mW Click 'set' Laser spot at the center appears
Z: 7, 181.978 µm 14,097.361 µm Axes: XYZ V Set Point Stop	

Texas A&M Engineering

Department of Electrical & Computer Engineering

Think 3D – set up printer: focusing on the substrate

АМ

Department of Electrical

& Computer Engineering

Experiment Station

Think 3D – set up printer: focusing on the substrate

New File - 3 Station Menu deals with the	job file, not stl file		- 0 X	
	<text></text>	NanoOne 1000 Objective: UPLXAPOIDX Description: Focusing Elapsed Time: - Steps: 0/0 Cancel Ca	Send to printer	Tilt correction Set substrate Double 'Center Top' Click 'Autofocus' Click 'Set Z to current' Repeat for the other points.
Stage ↑ ↑ ↓ <th> 9. Increase Z with the slow me 10. Click Autofocus, set parar 11. Perform tilt correction 12. Move to center 13. Perform final autofocus 14. Start printing </th> <th>ode until the laser spo neters, and click start</th> <th>ot become sma</th> <th>aller</th>	 9. Increase Z with the slow me 10. Click Autofocus, set parar 11. Perform tilt correction 12. Move to center 13. Perform final autofocus 14. Start printing 	ode until the laser spo neters, and click start	ot become sma	aller

Texas A&M Engineering

Department of Electrical <u>& Computer Engineering</u>

Appendix

AggieFab Nanofabrication Facility

Department of Electrical & Computer Engineering

1-Photon vs 2-Photon polymerization

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

TEXAS A&M. TEE

Vat mode

- > Combination of various vats and substrates: objective media (oil, air, water) | substrate size
- Printing part height up to 42 mm

TEXAS A&M

ĀМ

Texas A&M Engineering

Experiment Station

Ā M

Department of Electrical

& Computer Engineering

Bottom up mode

- > Printing into sterile vessels, petri dishes, or any transparent substrates
- Printing from the bottom of the vessel upwards
 - Printed structure height limit because of the scattering of laser through the polymerized resin.

ĂМ

TEXAS A&M

Texas A&M Engineering Experiment Station

Department of Electrical & Computer Engineering

Resins

Refer the brochure on the desktop

Department of Electrical & Computer Engineering

Printing materials selection guide

Printing resins

for any application

yappneation	Updraft	Up <mark>brix</mark>	UPsol	Up thermo Powered by cubicure	Upphoto	UP opto	Upblack	Upflow
Common Objective	20x,10x	40x	40x,20x	10x,5x	20x,10x,5x	40x,20x,10x	10×	40x,20x,10x
Fabrication Speed	+++	++	++	++	++	+	++	++
Highly Transparent						++		+
Vat Mode	~	~		~	~	~	~	~
High Aspect Ratio	~	~		~	~	~	~	~
Low Viscosity		~			~			~
Low Fluorescence						~	~	~
Low Transmissive							~	
Refractive Index Matched		~						
2.5D Structures		~	~					
Sub-µm Printing		~	~					
Overhangs Smaller 90°			~					
Bio Compatible*				✓	~	~	~	~
High Temperature Stability*	**			~				
								23

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

Objectives (1/3)

- ➤ 5 objectives available
- Select one of them based on the resolution and total size of the printing structure
- Estimation of printing time is available in the 'Think 3D'
 - Refer the excel file on the desktop, 'Print time estimation.xlsx'

Ohioativa	ID	Media	NA	WD	FOV	BH	Max Bottom Up	ХҮ	Volume
Objective				(mm)	(mm)	(mm)	Height (mm)	speed (mm/s)	speed (mm^3/s)
5X	Fluar	air	0.25	12.5	2.8	80	3	1200	300
10X	UPLFLN	air	0.3	3.1	1.4	60	2	600	60
10X	UPLXAPO	air	0.4	10	1.4	60	0.7	600	40
20X	UPLSAPO	water	0.7	0.35	0.7	30	0.25	300	2.25
40X	UPLSAPO40XO	oil	1.4	0.13	0.35	10	0.15	150	0.25

ĀМ

Objectives (2/3)

		BOTTOM UP	VAT	VERTICAL	HORIZONTAL		
	40x	≤ 150 µm		> 0.8 µm	> 1.8 µm	150 mm/s	0.25 mm³/h
CTIVES	20x	≤ 250 µm	DADT	> 2.5 µm	> 5 µm	300 mm/s	2.25 mm³/h
ard obje	10x NA0.4	≤ 700 μm	HEIGHT UP TO	> 5 µm	> 20 µm	600 mm/s	40 mm³/h
STAND/	10x NA0.3	≤ 2 mm	4011111	> 7 µm	> 50 µm	600 mm/s	60 mm³/h
	5x	≤ 3 mm		> 12.5 µm	> 200 µm	1,200 mm/s	300 mm³/h

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering **AM** Experiment Station

Objectives (3/3)

		NA NA	WD	FOV	BH	IM	FS	FS
	40x	1.4	0.13	0.35	10	oil	≤ 220 nm	≤ 550 nm
CTIVES	20x	0.7	0.35	0.7	30	water	≤ 420 nm	≤ 2.9 μm
ard obje	10x NA0.4	0.4	3.1	1.4	60	air	≤ 730 nm	≤ 9.2 µm
STAND	10x NA0.3	0.3	10	1.4	60	air	≤ 980 nm	≤ 16.4 µm
	5x	0.25	12.5	2.8	80	air	≤ 1.2 µm	≤ 23 µm

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

TM | TEXAS A&M

- Numerical Aperture | WD – Working Distance [mm] | FOV – Field of View [mm] | BH – Block Height [µm] | IM – Immersion Media | FS – min. Feature Size

Vat (XXL) - air

Texas A&M Engineering Experiment Station

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

AM | TEXAS A&M.

Stages and wafer holders:

Tilt correction stage

various sample substrate holders

Tilt correction 4"stage

Various sample substrate holders

TEXAS A&M

ĀМ

TEXAS A&M UNIVERSIT

Department of Electrical & Computer Engineering

Texas A&M Engineering Experiment Station

Glass substrate & holders

Glass substrates

- Square: 10, 20, 40 mm²
- Round: 1 inch in diameter

Glass substrate holder

Ā M

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

Substrate holder manipulation

Holding sample

- Place the substrate holder
- Rotate the knob clockwise
- Sample holding square wider
- Place a glass substrate
- Bring back the holder using knob

Knob operation

- Move the stage holder along +X
- Lift up the metal pieces, popping up the glass substrate

Texas A&M Engineering

Experiment Station

Department of Electrica

& Computer En

AggieFab Nanofabrication Facility

ĀМ

SIGNATURES AND REVISION HISTORY

1. Original author of this document: Dr. Sung Oh Woo

- 2. Original author Title or Role: Research Engineer
- 3. Date of original: 11/12/2024

Approvals:

Technical Manager Signature:_____

Date: _____

Revision	Author	Date
Original Issue	Sung Oh Woo	11/12/2024

ĀМ