Oxford Instruments EDS AggieFab Texas A&M University

AggieFab Nanofabrication Facility

Department of Electrical & Computer Engineering 1. Start SEM and EDS

- 2. EDS components
 - > Project
 - > Nevigator
 - Scan image
 - Map
 - Spectral

3. Finish EDS

A M

□ SCOPE

- The purpose of this document is to describe requirements and basic operating instructions for the FEI Helios SEM/FIB System. The use of this tool is limited to approved processes only.
 AFETY
- □ SAFETY
 - Be sure that you are trained and signed off to use this equipment.
 - Be sure to keep all doors and protective shields in place before operating this equipment.
 - Use care when operating around high voltage or high current.
 - If you are unsure about any procedure or indication while operating this equipment be sure to contact a staff member or trainer for assistance.

Starting EDS

- 1. Start SEM and do the e-beam alignment at 15 kV or higher.
 - 1. Please refer to the SEM operational manual if needed
- 2. Turn on the EDS PC monitor
- 3. Start the EDS operating software: 'AZtecOne'

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

Texas A&M Engineering

Experiment Station

TEXAS A&M

ĀМ

Get EDS detector operational

- 1. In the status bar, click the icon pointed by the red arrow
- 2. Thermal tap click 'Operate': wait until the status changes to 'Cold'
- 3. Insertion tap click 'In' position: you will see the detector moving in.

Texas A&M Engineering

Experiment Station

Department of Electrical

& Computer Engineering

TEXAS A&M

ĀМ

Project

Specimen: one or more sites of interest, for example, sample #. Up to 5 stubs can be loaded.

Site: interested area for data acquisitions

Note: Any project is representated by a folder which is saved with the name and location that you specify when you create and save a new project.

ĀМ

TEXAS A&M

Texas A&M Engineering

Experiment Station

Department of Electrical

& Computer Engineering

Specimen Details

AggieFab Nanofabrication Facility

$\prod_{U \ N \ I \ V \ E \ R} A \& M_{U \ N \ I \ V \ E \ R} A \& M_{Y}$

Scan image

Annotating

TEXAS A&M

A M

Use the annotating tools if needed

Мар

- 1. Select the map acquisition tool (left)
- 2. Outline the acquisition region using mouse drag

Spectra

1. 'Thermal' tap – click 'Standby'
2. Insertion – click 'Out'
3. Close the 'AZtecOne'
4. Power off the monitor

ĀМ

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

SIGNATURES AND REVISION HISTORY

- 1. Original author of this document: Dr. Sung Oh Woo
- 2. Original author Title or Role: Research Engineer
- 3. Date of original: 8/1/2024
- 4. Revision B notes: description of the LMIS handling is added

Sandra Malhotra **Approvals:** Technical Manager Signature:

8/2/2024 Date:

Revision	Author	Date
Original Issue	Sung Oh Woo	8/1/2024

