
FEI Helios NanoLab 460F1 FIB operational guide AggieFab Texas A&M University

Department of Electrica

Contents

- Start up the Helios
- Stages load/unload
- Electron/Ion beam control for SEM / FIB users
- Turning on E-beam & I-beam
- Toolbars icons/menus
- Eucentric height
- E-beam alignment
- FIB procedure
- Patterning tap
- TEM lift-out grid
- TEM sample holder
- Lamella lift-out procedure: Cap deposition, Trenches, Easy-lift procedure,

ĀМ

 $\operatorname{TEXAS}_{U \ N \ I \ V \ E \ R \ S \ I \ T \ Y} M$

Texas A&M Engineering Experiment Station

Finishing the secession

□ SCOPE

• The purpose of this document is to describe requirements and basic operating instructions for the FEI Helios SEM/FIB System. The use of this tool is limited to approved processes only.

□ SAFETY

- Be sure that you are trained and signed off to use this equipment.
- Be sure to keep all doors and protective shields in place before operating this equipment.
- Use care when operating around high voltage or high current.
- If you are unsure about any procedure or indication while operating this equipment be sure to contact a staff member or trainer for assistance.

Texas A&M Engineering Experiment Station

 $\begin{array}{c} TEXAS A \& M \\ U & V & F & S & I & T \\ \end{array}$

Beginning your session

Note:

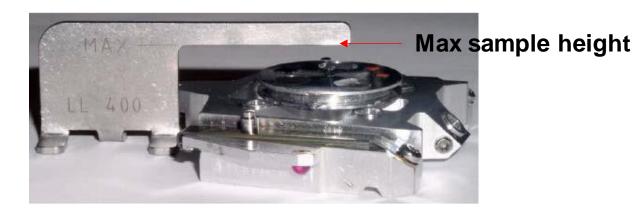
- Always check the stage in quad 4 on the screen when loading/unloading your samples.
- Please contact staff for ferromagnetic powers/particles or small samples.
- For ferromagnetic samples, place your sample securely on the stub so that samples will not hit the objective lens.

Starting your session

- 1. Start iLab.
- 2. Log in to the user software
- 3. Load your sample
 - 1. Check the height of your sample (pictures on next slide)
 - 2. Load samples (next slide)
 - 3. Wait until the stage transfers to the loading/unloading chamber
 - 4. Release the stage: 'Release' button
 - 5. Pick up the stage, load your sample, and place the stage back on the stage holder
 - 6. Click 'Load' button
 - 7. Wait until the stage transfer is completed
- 4. Take a Navigation picture
 - 1. In the menu, 'stage' 'take nav-Cam Photo'
 - 2. Explore the sample locations by clicking the specific locations in the picture at 3rd quad

ĀМ

TEXAS A&M


ſĨŦŦ

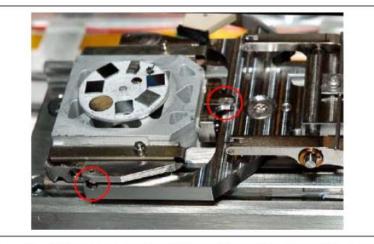
Texas A&M Engineering Experiment Station

Sample mount and loading/unloading

Sample stage: five slots

Unloading Sequence

- 1. Push the Unload / Release button to start the unloading sequence (lit is blinking). After finishing, the Loadlock is vented and the lid can be opened. Both buttons are enabled.
- 2. Open the lid, the Clamp / Load button becomes disabled. Push the Unload / Release button to release the carrier from the Loadlock arm.
- 3. Take the carrier out from the Loadlock arm.


Loading Sequence

 $\operatorname{TEXAS}_{U N I V E R S I T Y}_{U N I V E$

ĀМ

1. Place the carrier on the Loadlock arm, making sure that all three alignment rubies are positioned properly. The Clamp / Load button becomes enabled (lit is on).

Figure 5-7 Alignment Rubies with Only Two Shown

2. Close the lid and push the Clamp / Load button. The loading sequence starts (lit is blinking).

Texas A&M Engineering

Experiment Station

Department of Electrical

& Computer Engineering

Ion beam heater <mark>OFF</mark> state Never click the Wake Up button Sleep button should be grayed out.		
System	?	
Wake Up	Sleep	
Column	? 😽	
	Beam Current	

~

Beam On

High Voltage

↔ 🗸

80 pA - +

+

30.00 kV -

Ion beam <mark>ON</mark> state If you see the Sleep button is activated, please click it to deactivate it

System	?
Wake Up	Sleep
Column	? 🍪
Beam On	Beam Current
High Voltage ↔ <mark>↓</mark>	30.00 kV -+
Magnification	? 🍪

TEXAS A&M UNIVERSITY

Department of Electrical & Computer Engineering

ĀМ

FIB USERS

Not operating state: FIB not using \rightarrow Ga ion source heater off → Ga ion beam not scanning System ? Wake Up Sleep ? 🏀 Column Beam Current ¥ 80 pA - + Beam On High Voltage ↔ 🗸 30.00 kV - +

Heater on by click Wake Up → start to consume ion source → Ion beam yet to start to scan

System	?	
Wake Up	Sleep	
Column	? 🏀	
(Beam On High Voltage	Beam Current	
↔ ✓	30.00 kV -+	
Magnification	? 🏀	
Counte Magnifications		

Ga+ source completely heated up - operational Ion beam scan by click Beam On Good to go for FIB

> Texas A&M Engineering Experiment Station

TEXAS A&M UNIVERSI

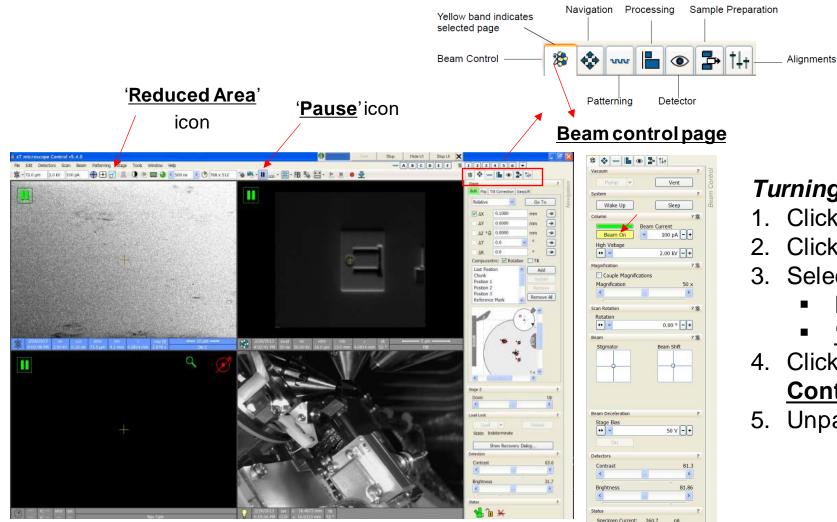
Department of Electrical & Computer Engineering

A M

System	?
Wake Up	Sleep
Column	? 🏀
Beam On	eam Current 80 pA - +
High Voltage	
↔ •	30.00 kV -+
Magnification	? 🏀

When FIB is finished,
1) Click 'Sleep'
2) Click 'Beam On'

System	?	
Wake Up	Sleep	Sleep button deactivated
Column	? 🏀	
Beam On	Beam Current 80 pA -+	
High Voltage	30.00 kV -+	


TM | TEXAS A&M.

Pages Toolbar

Ion Beam Current:

😽 🚡 🧎

41

Turning e-beam

TEXAS A&M UNIVERSITY.

A M

- 1. Click 'Beam control' in the Pages Toolbar
- 2. Click 1st quad on the monitor screen
- 3. Select the voltage and current
 - Menu bar or
 - <u>'Beam Control page'</u>

| ſŦĨŦŦ

- 4. Click the <u>Beam on</u> button under the <u>'Beam</u> <u>Control page'</u> tab
- 5. Unpause the screen using the 'Pause' icon

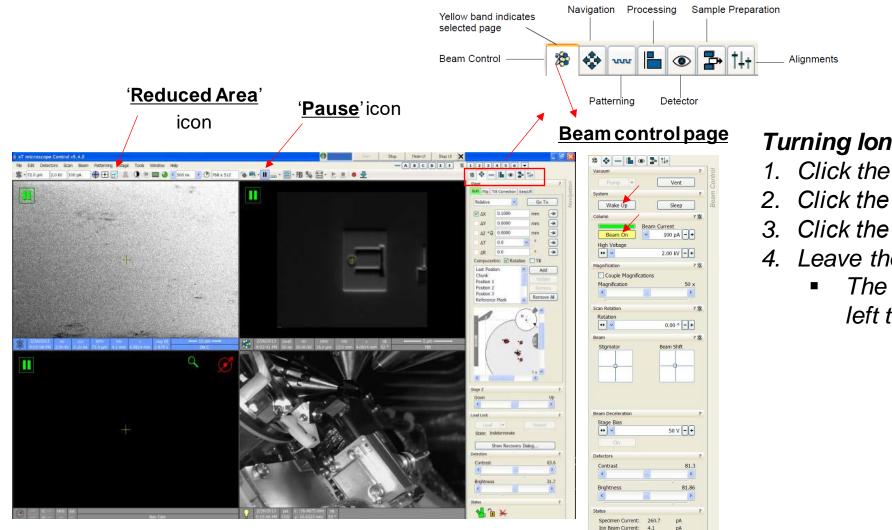
Texas A&M Engineering

Experiment Station

Department of Electrical

& Computer Engineering

Start Ion beam (FIB users)


Pages Toolbar

41

5 008-6 mba

Chamber Pressure

😽 🚡 🌶

Turning lon-beam

 $\operatorname{TEXAS}_{U \ N \ I \ V \ E \ R} A \overset{\bullet}{A} \overset{\bullet}{M}_{I \ V}$

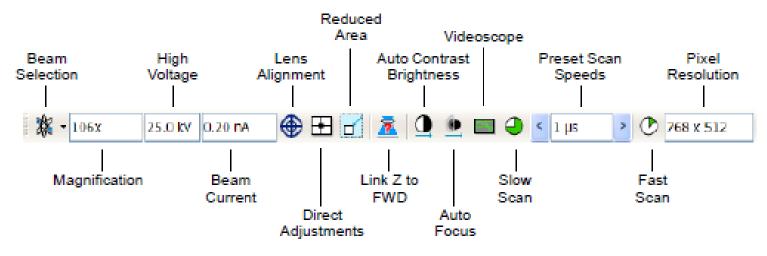
[ĨŢŢ

A M

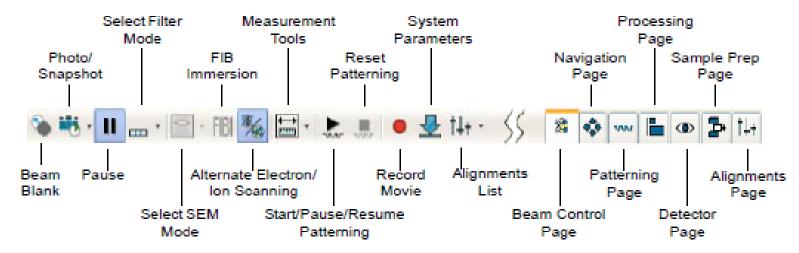
- 1. Click the 2nd quad on the screen
- Click the 'Wake Up' button (arrow)
- 3. Click the 'Beam On' button (arrow)
- Leave the ion-beam as paused
 - The green pause symbol is shown *left top screen*

Texas A&M Engineering

Experiment Station


TEXAS A&M UNIVERSIT

Department of Electrical


& Computer Engineering

Toolbar icons/menus

Toolbar Left Half

Toolbar Right Half

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

М

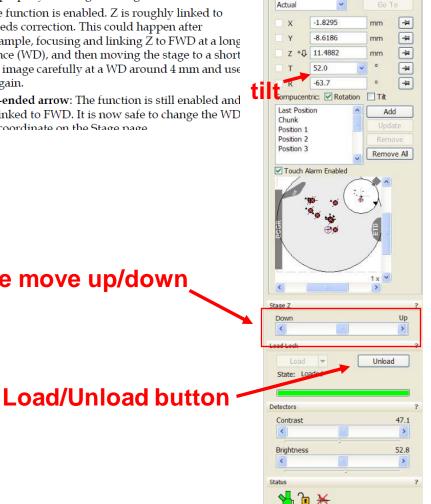
Texas A&M Engineering

Experiment Station

TEXAS A&M

111777

ĀМ


Eucentric height for FIB users

- 1. Link Z to working distance
 - Focus on the sample surface with SEM
 - Click 'Z to WD' icon: the icon changes its shape with green arrow.
- 2. Set the working distance to 4 mm.
 - Input 4 in the Z (Navigate page)
 - Click 'go to' button
- 3. Find Eucentric height/point: the height of the stage where the specific point remains the same at tilt = 0 and 52
 - Set magnification X1000
 - Find a recognizable feature, and center it under the yellow cross by moving the stage
 - Watching the feature, change the stage tilt to 10°. Using the Z control, bring the feature back under the cross
 - Repeat the previous step at 20° or 30°
 - Repeat at tilt = 52°

'Z to WD icon'

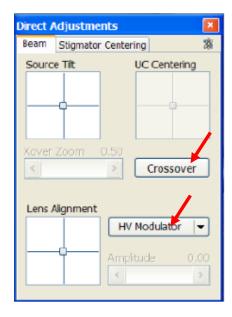
- Red question mark: The function is enabled and the link between Z and FWD is unknown. Use the function as soon as possible, after properly focusing the image.
- **Red circle**: The function is enabled. Z is roughly linked to FWD, but it needs correction. This could happen after changing the sample, focusing and linking Z to FWD at a long working distance (WD), and then moving the stage to a short WD. Focus the image carefully at a WD around 4 mm and use this function again.
- Green double-ended arrow: The function is still enabled and Z is properly linked to FWD. It is now safe to change the WD hy setting a 7 coordinate on the Stage nage

Stage move up/down

Department of Electrica

& Computer Eng

Texas A&M Engineering


Experiment Station

'Nevigate'

Bulk Flip Tilt Correction EasyLift

- 1. Focus on the surface with the magnification you will be doing operation.
- 2. Adjust stigma
- 3. Do the lens modulation
 - 1. Click 'Direct Adjustments' icon
 - 2. Click 'Crossover' button and center the beam
 - 3. Click 'HV Modulator' and make the image static by adjusting the horizontal and vertical lines. Click and drag the lines one by one.
- 4. Adjust focus and stigma again.

'Direct Adjustments'

Texas A&M Engineering

Experiment Station

Department of Electrica

& Computer Engineering

TEXAS A&M

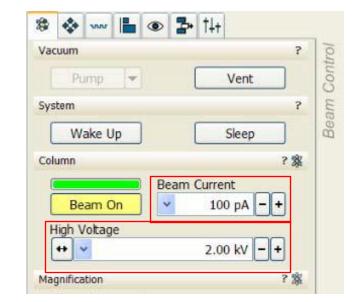
TÉÈ∓-

ĀМ

For SEM USERS

do your job and move to the last slide to shutdown the system

For FIB USERS


Go to next slide

Starting Ion-beam, tilt = 52°

- 1. Click 2nd quad on the screen
- 2. The Ga ion source was activated previously by clicking the 'Wake Up' button.
- 3. Select the '<u>Beam Current</u>' and '<u>High Voltage</u>': those can be selected in the 'Beam control page' or in the menu bar.
- 4. Before scanning I-beam, adjust the magnification.
- 5. Once the 2nd quad is unpaused, the ion beam scans the sample area.
- 6. 'Shift' key + 'mouse left drag' is used to shift the I-beam image to align it with the SEM image.
- 7. Adjust focus and stigma

Aper	ture	use
1.1	pА	High resolution imaging
7.7	pА	High resolution imaging
24	pА	High resolution imaging, small cross section cleaning
40	pА	General resolution imaging, cross section cleaning
80	pА	General resolution imaging, cross section cleaning
230	pА	Imaging, cross-section cleaning
430	pА	Cross-section cleaning
790	pА	Medium bulk milling or large cross-section cleaning
2.5	nA	Large cross-section cleaning
9.3	nA	Rough bulk milling for large cross-sections
21	nA	Extremely rough bulk milling for large cross-sections
47	nA	Extremely rough bulk milling for large cross-sections
65	nA	Extremely rough bulk milling for large cross-sections

Texas A&M Engineering

Experiment Station

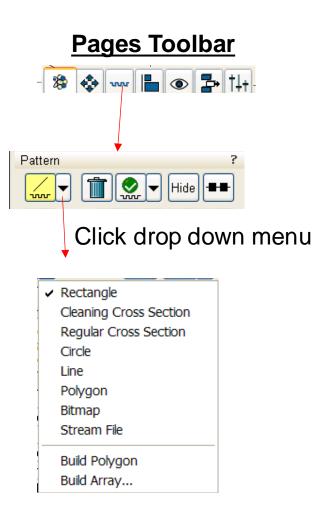
Department of Electrica

& Computer Engineering

A M

 $\operatorname{TEXAS}_{U \ N \ I \ V \ E \ R \ S \ I \ T \ Y_{*}} M$

1. Select a pattern from the Pattern Selector and draw a pattern in the active quad (1st quad: electrons, 2nd quad: ions).


- 2. Select a beam for patterning from the toolbar.
- 3. Enter a value in µm as the depth in the Property Editor.
- 4. Select the milling aperture.
- 5. Focus and stigmate the beam on the area adjacent to the pattern.
- 6. Snapshot a single frame to confirm the pattern position.
- 8. Select Patterning > Start Patterning or click Start Patterning on the toolbar to begin milling.
- 9. Pause, resume, and stop patterning by clicking the corresponding buttons in the menu bar

Department of Electrica

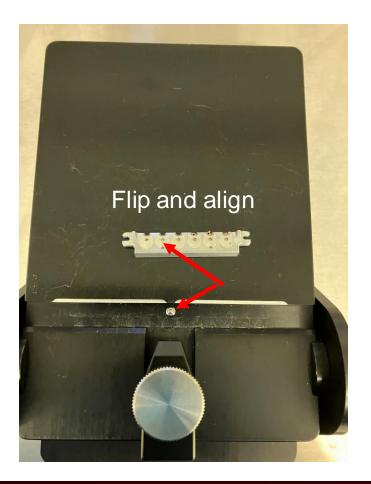
& Computer Engineerin

ĀМ

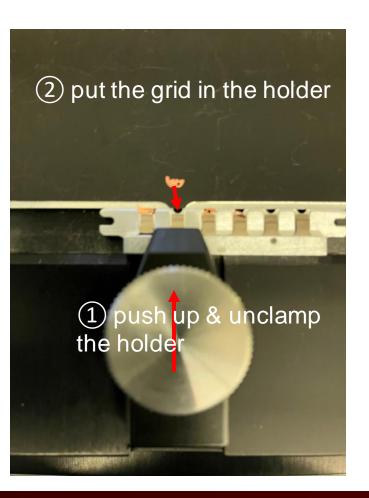
Patterning Properties

Basic	Advance	d Progress S. Mill
Name		Value
Applica	ation	
Xisize		0 μm
Y size		0 μm
Z size		0 μm
ScanDi	rection	Bottom To Top
DwellTi	ime	0 s
Beam		Electron
Time		0 s
Beam Current		0 pA

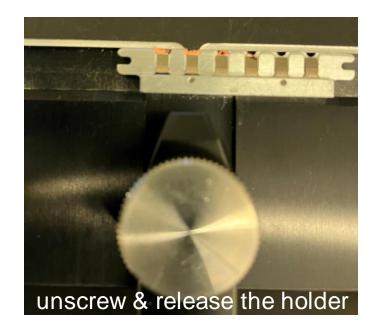
ĀМ


Application: Name of the application. Clicking the value field produces a dropdown arrow and list of applications. The parameters for the selected application are automatically set for the subsequent properties. **Scan Direction:** Bottom to Top or Top to Bottom, etc. **Beam:** The beam used for patterning **Beam Current:** The amount of current striking the sample.

Department of Electrical


& Computer Engineering

TEM lift out grid

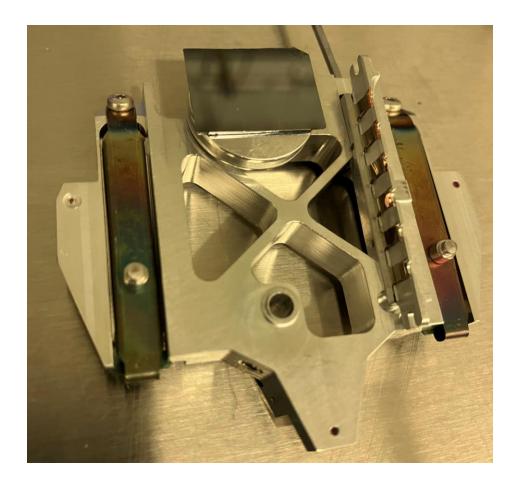

Placing TEM grid holder on the base

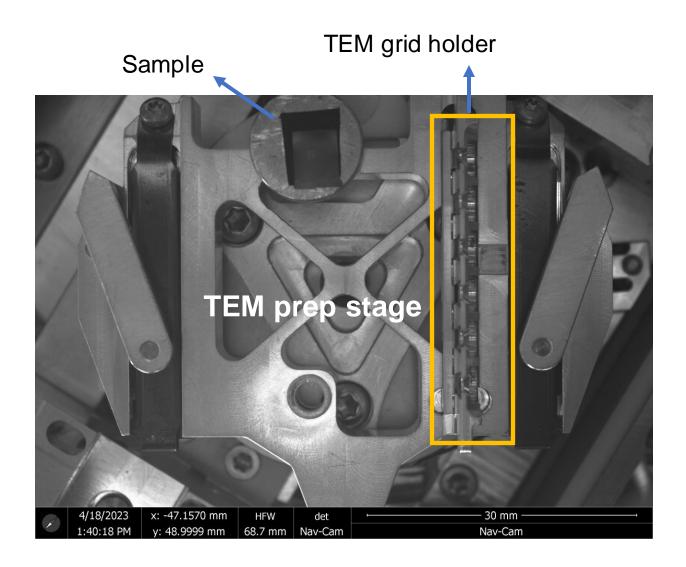
Clamping the grid

Releasing the holder

Texas A&M Engineering Experiment Station

AM


Department of Electrical & Computer Engineering


TEXAS A&M

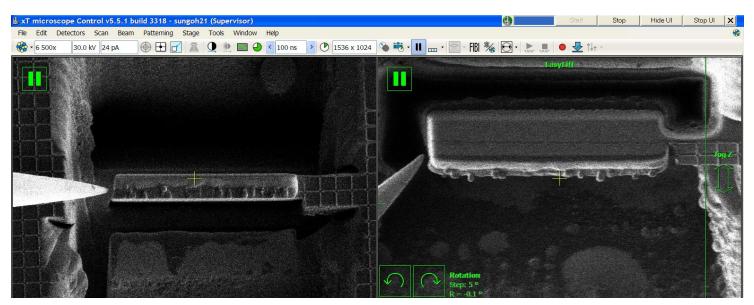
ĀМ

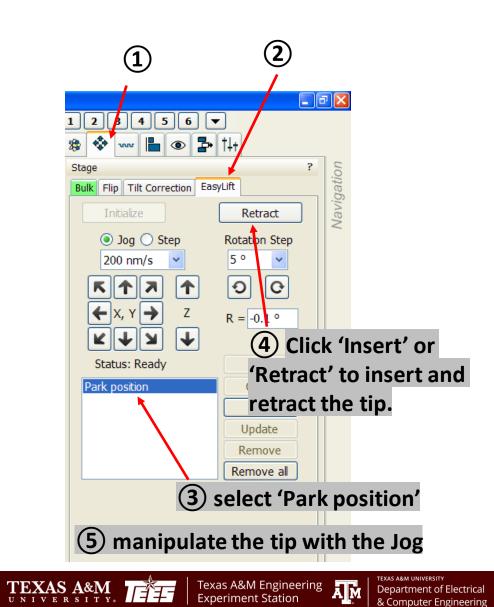
TEM sample holder

Dedicated stage for the TEM grid holder

TEXAS A&M. TEES

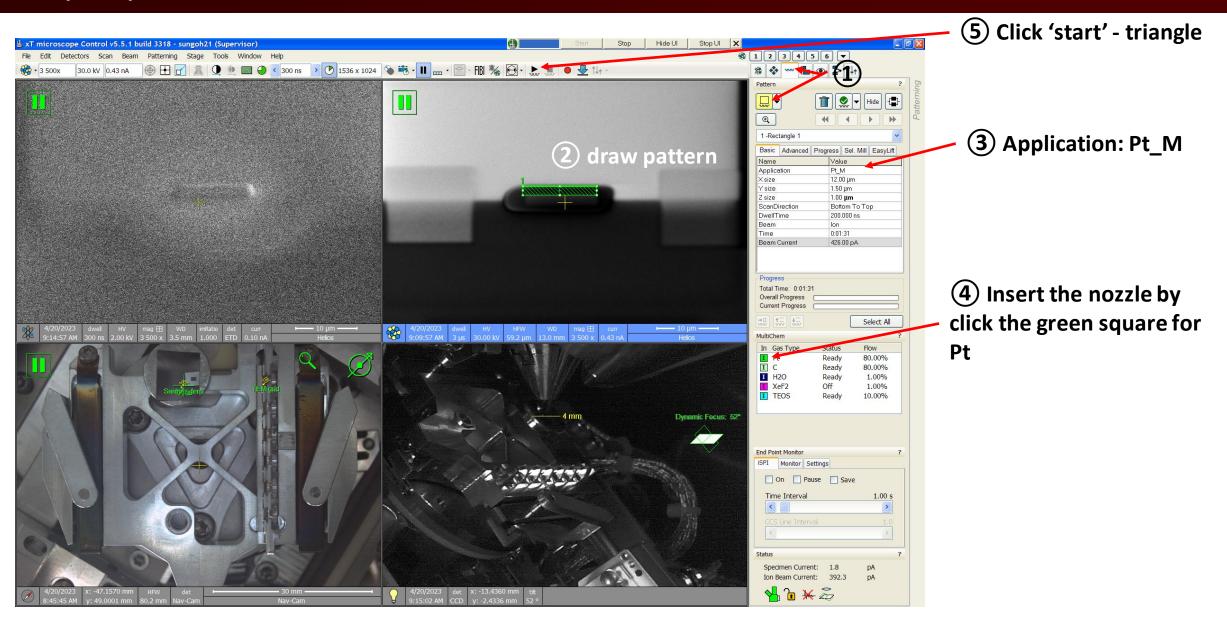
TEXAS A&M UNIVERSIT


Department of Electrical & Computer Engineering


Texas A&M Engineering Experiment Station

TEM sample lift out flow

1. Cap deposition2. trenches3. J cutPt/Cfilt = 0Tilt = 0


4. EasyLift: micromanipulator for sample handling

ĀМ

Cap deposition

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

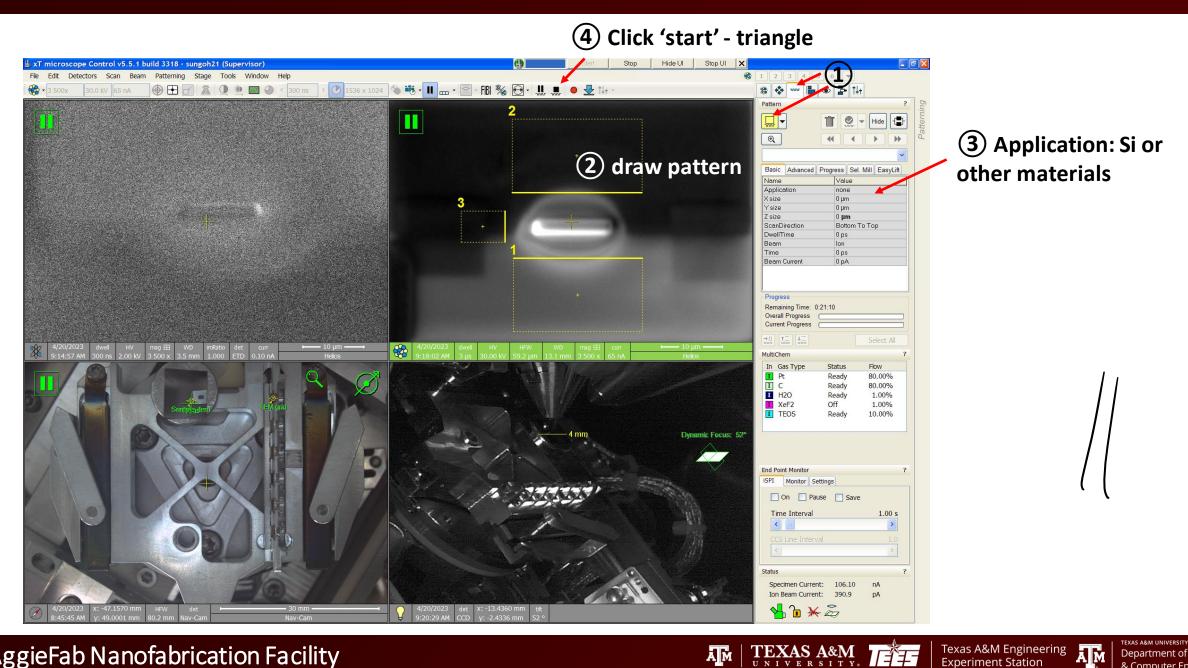
ĀМ

Texas A&M Engineering

Experiment Station

TEXAS A&M

ĀМ


- 1. Deposition for protecting the sample. Example: carbon and Pt deposition
 - 1. E-beam induced deposition, stage tilt = 0°
 - 1. In the 'Pattern' tab, draw a rectangle pattern in the 1st squd (SEM)
 - 2. In the 'Application', select 'C e-dep surface'
 - 3. Insert gas injector needle: click the square for the gas you want to use
 - 4. Hit the start icon, triangle in the menu
 - 5. Low HV (<5kV) and high current (~26nA)
 - 6. Retract the gas nozzle
 - 2. I-beam induced deposition, stage tile = 52°
 - 1. Align the SEM and the FIB images using 'beam shift'
 - 2. Click the 2nd sqad, and draw the pattern on the pattern
 - 3. Ex) carbon & Pt deposition, carbon deposition 'C_M' and followed by Pt, 'Pt_dep'

Texas A&M Engineering Experiment Station

TEXAS A&M

- 1. Ion beam current depends on the size of patterns.
- 2. Check focus, stigma, and shift when the beam current changes

Trenches

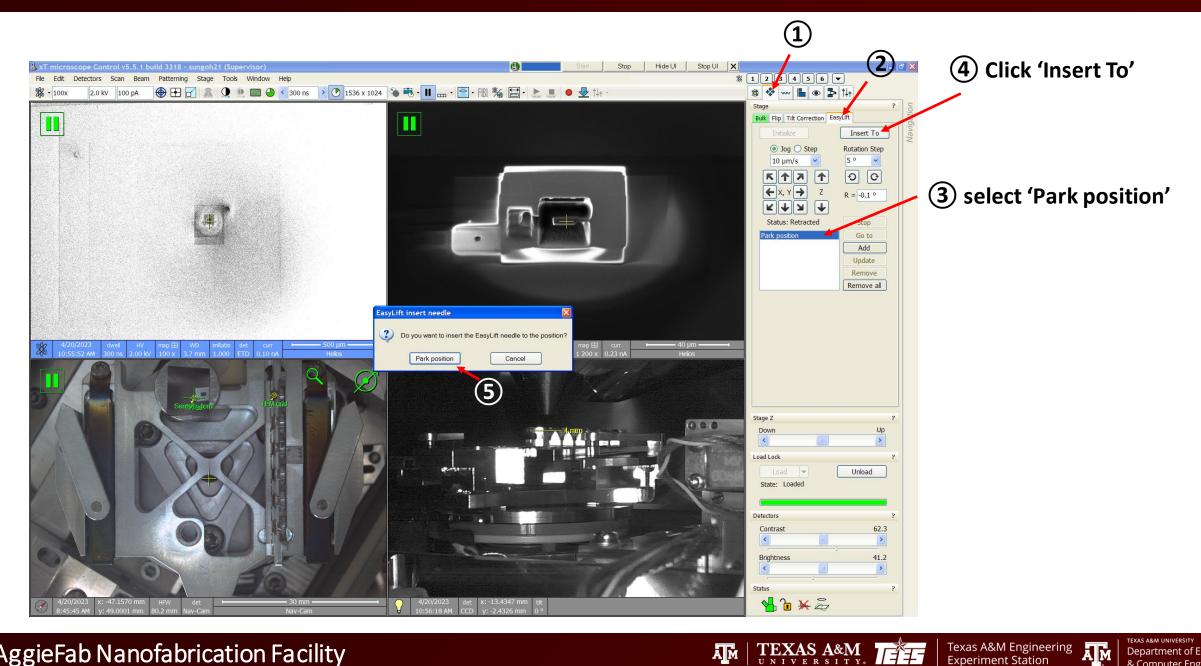
ĀМ

Experiment Station

Department of Electrical

& Computer Engineering

Trenches


- 1. Cross-section cuts 'Regular Cross Section 1' top and bottom of the protection pattern
 - 1. Draw the cut patterns that are a couple microns wider than the protection pattern
 - 2. For bulk cuts, high current might be chosen. Adjust focus and stigma.
 - 1. Turn off the beam blaker, full screen, and then check the beam using the snapshot
 - 1. 'Scan' 'Spot' mode. Select the point where the beam is pointing at.
 - 2. 'Scan' 'Beam Blank'. I-beam exposure immediately.
 - 3. 'Scan' 'Full Frame'.
 - 2. Put the gaps between the cut and the protection pattern according to the beam size

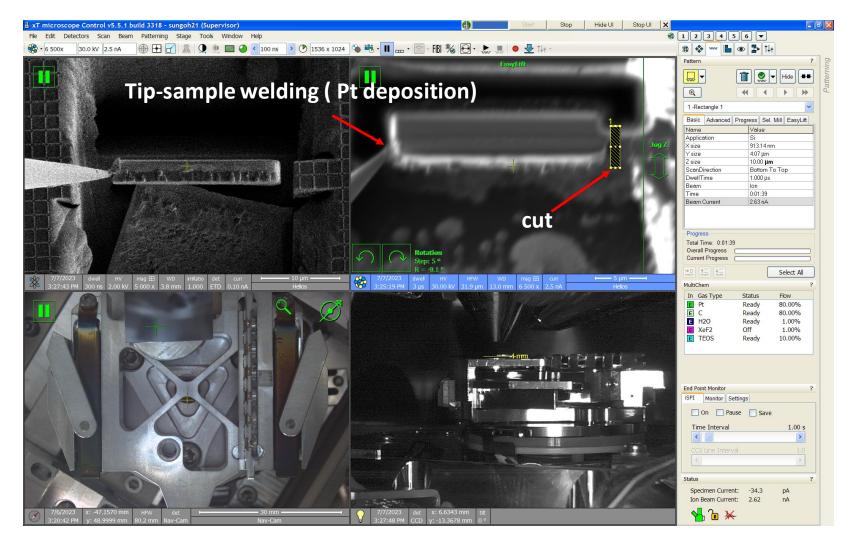
Texas A&M Engineering Experiment Station

TEXAS A&M

- 2. Cleaning cross section cut with two or three lower aperture (~20nA or less if needed)
 - 1. Application 'Si New'`

Easy-Lift: micromanipulator

ĀМ


Department of Electrical

& Computer Engineering

Experiment Station

TEM sample lift out

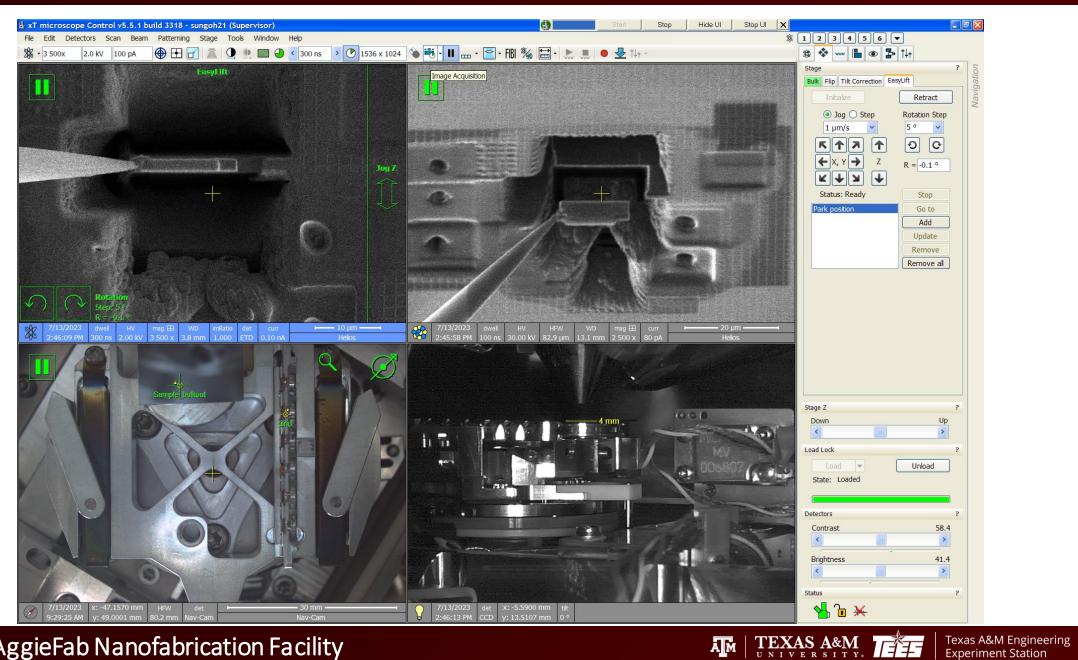
5. Lift out the sample

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

ĀМ


Texas A&M Engineering

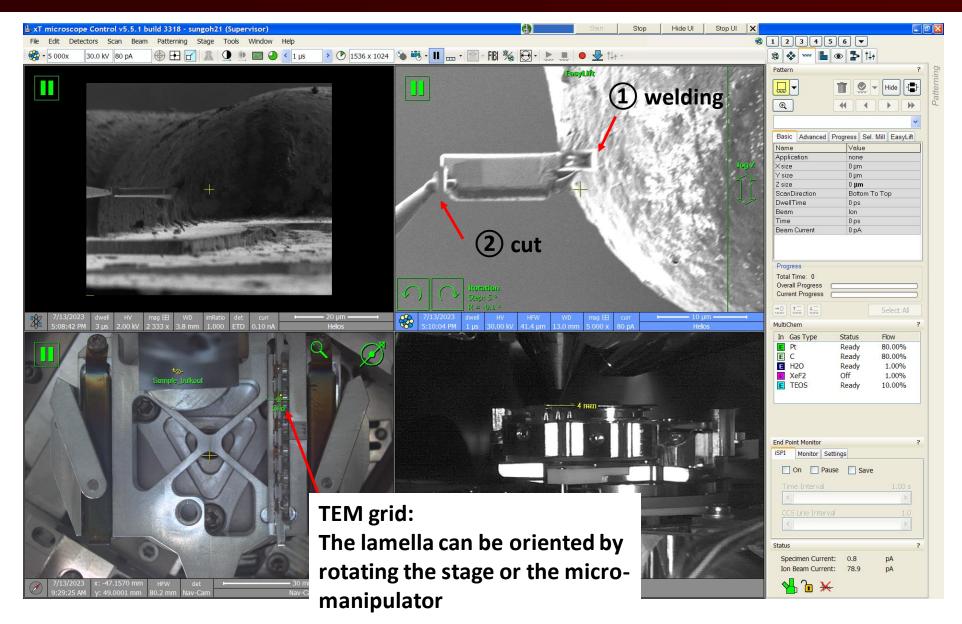
Experiment Station

TEXAS A&M

Ā M

TEM sample lift out - continued

TEXAS A&M UNIVERSITY


Department of Electrical

& Computer Engineering

ĀМ

*|[*4]∓7

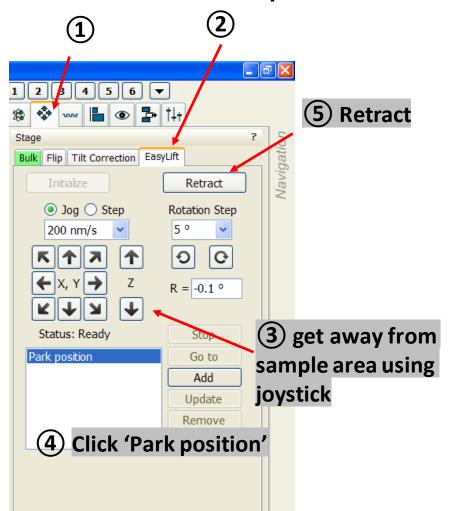
Place the sample on the grid

TEXAS A&M UNIVERSITY

Department of Electrical

& Computer Engineering

Texas A&M Engineering


Experiment Station

TEXAS A&M

ĀМ

Shutdown the system: FIB session

If you used the micromanipulator, Retract the micromanipulator

Finish the secession

- 1. Click the 'Pause' button to stop beams
- 2. Tun off the lon-beam:
 - Click 2nd quad
 - Click '<u>Beam On</u>' AND '<u>Sleep</u>' button
- 3. Tun off the Electron-beam:
 - Click 1st quad
 - Click 'Beam On'
- 4. Set tilt = 0
- 5. Unload your samples
- 6. Transfer the stage back to the main chamber:

 $\operatorname{TEXAS}_{U N I V E R S I T Y}^{W}$

• wait until the stage comes back to the main chamber

Texas A&M Engineering Experiment Station

Department of Electrical & Computer Engineering

- Check visually through the CCD CAM at quad 4.
- 7. Log off the SEM/FIB software

ĂМ

- File log off
- 8. Log off iLab

Finish the secession

ĂМ

TEXAS A&M

[ĴĴŢ]

Texas A&M Engineering Experiment Station

Department of Electrica

- 1. Click the 'Pause' button to stop beams
- 2. Tun off the Electron-beam:
 - Click 1st quad
 - Click 'Beam On'
- 3. Set tilt = 0
- 4. Unload your samples
- 5. Transfer the stage back to the main chamber:
 - wait until the stage comes back to the main chamber
 - Check visually through the CCD CAM at quad 4.
- 6. Log off the SEM/FIB software
 - File log off
- 7. Log off iLab

SIGNATURES AND REVISION HISTORY

- 1. Original author of this document: Dr. Sung Oh Woo
- 2. Original author Title or Role: Research Engineer
- 3. Date of original: 9/1/2022
- 4. Revision B notes: description of the LMIS handling is added

Approvals:

Technical Manager Signature: ____Sandra G Malhotra

Date: ___6/7/2024__

Revision	Author	Date
Original Issue	Sung Oh Woo	9/1/2022
Rev B	Sung Oh Woo	6/7/2024

AggieFab Nanofabrication Facility

ĀМ